Related Questions with Solutions

Questions

Quetion: 01 The equation of line: $\frac{x - x'}{a'} = \frac{y - y'}{b'} = \frac{z - z'}{c'}$ The equation of plane : $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$ Equation of plane through the intersection of the two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ is $(a_1x + b_1y + c_1z + d_1) + k(a_2x + b_2y + c_2z + d_2) = 0$

The equation of the plane through (0, 2, 4) and containing the line $\frac{x+3}{3} = \frac{y-1}{4} = \frac{z-2}{-2}$ is A. x - 2y + 4z - 12 = 0 B. 5x + y + 9z - 38 = 0 C. 10x - 12y - 9z + 60 = 0 D. 7x + 5y - 3z + 2 = 0

Solutions

Solution: 01

Equation of plane be a[x - 0] + b[y - 2] + c[z - 4] = 0Point on plane $\rightarrow [-3, 1, 2]$ and parallel to vector $\rightarrow 3\hat{i} + 4\hat{j} - 2\hat{k}$ a[-3 - 0] + b[1 - 2] + c[2 - 4] = 0 3a + b + 2c = 0and 3a + 4b - 2c = 0 $\frac{a}{-10} = \frac{b}{12} = \frac{c}{9} = \lambda$ $a = -10\lambda, b = 12\lambda, c = 9\lambda$ Plane -10x + 12[y - 2] + 9[z - 4] = 0-10x + 12y + 9z - 60 = 0

Correct Options

Answer:01 Correct Options: C